Советы для новичков

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Технология сварки под флюсом

При сварке под флюсом подготовку кромок и сборку изделия производят более точно, нежели при ручной сварке. Настроенный под определенный режим автомат точно выполняет установленный процесс сварки и не может учесть и выправить отклонения в разделке кромок и в сборке изделия.

Разделку кромок производят машинной кислородной или плазменно-дуговой резкой, а также на металлорежущих станках. Свариваемые кромки перед сборкой должны быть тщательно очищены от ржавчины, грязи, масла, влаги и шлаков.

Это особенно важно при больших скоростях сварки, когда загрязнения, попадая в зону дуги, приводят к образованию пор, раковин и неметаллических включений.

Очистку кромок производят пескоструйной обработкой или протравливанием и пассивированием. Очистке подвергается поверхность кромок шириной 50–60 мм по обе стороны от шва. Перед сваркой детали закрепляют на стендах или иных устройствах с помощью различных приспособлений или прихватывают ручной сваркой электродами с качественным покрытием.

Прихватки длиной 50–70 мм располагают на расстоянии не более 400 мм друг от друга, а крайние прихватки – на расстоянии не менее 200 мм от края шва. Прихватки должны быть тщательно очищены от шлака и брызг металла. При сварке продольных швов для ввода электрода в шов и вывода его из шва за пределы изделия по окончании сварки к кромкам приваривают вводные и выводные планки.

Форма разделки планок должна соответствовать разделке кромок основного шва.

Сварочный ток, напряжение дуги, диаметр, угол наклона и скорость подачи электродной проволоки, скорость сварки и основные размеры разделки кромок выбирают в зависимости от толщины свариваемых кромок, формы разделки и свариваемого металла.

Стыковые швы выполняют с разделкой и без разделки кромок. При этом шов может быть одно– и двусторонним, а также одно– и многослойным (рис. 88).

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Рис. 88. Схемы устройств для удержания сварочной ванны и шлака при сварке под флюсом:

а – остающаяся подкладка; б – временная подкладка; в – гибкая лента; г – ручная подварка; д – медно-флюсовая подкладка; е – флюсовая подушка; ж – заделка зазора огнестойким материалом; з – асбестовая подкладка; а, б, в, д, е – односторонний шов; г, ж, з – двусторонний шов

Стыковая сварка односторонняя применяется при малоответственных сварных швах или в случаях, когда конструкция изделия не позволяет производить двустороннюю сварку шва.

Значительный объем расплавленного металла, большая глубина проплавления и некоторый перегрев ванны могут привести к вытеканию металла в зазоры и нарушению процесса формирования шва.

Чтобы избежать этого, следует закрыть обратную сторону шва стальной или медной подкладкой, флюсовой подушкой или проварить шов с обратной стороны.

На практике применяют четыре основных приема выполнения односторонней сварки стыковых швов, обеспечивающих получение качественного сварного шва.

Сварка на флюсовой подушке заключается в том, что под свариваемые кромки изделия подводят слой флюса толщиной 30–70 мм.

Флюсовая подушка прижимается к свариваемым кромкам под действием собственной массы изделия или с помощью резинового шланга, наполненного воздухом.

Давление воздуха в зависимости от толщины свариваемых кромок изделия для тонких кромок составляет 0,05–0,06 МПа и 0,2–0,25 МПа – для толстых кромок. Флюсовая подушка не допускает подтекания расплавленного металла и способствует хорошему формированию металла шва.

Для большего теплоотвода в целях предупреждения пережога металла кромок применяется сварка на медной подкладке. Вместе с тем подкладка, установленная с нижней стороны шва, предупреждает протекание жидкого металла сварочной ванны.

Подкладка прижимается к шву с помощью механических или пневматических приспособлений. После сварки подкладка легко отделяется от стальных листов. При зазоре между свариваемыми кромками более 1–2 мм медную подкладку делают с желобком, куда насыпают флюс.

В этом случае на обратной стороне шва образуется сварной валик. Ширина медной подкладки составляет 40–60 мм, а толщину подкладки (5–30 мм) выбирают в зависимости от толщины свариваемых кромок. Разработан метод сварки, при котором по обратной стороне шва перемещается медный башмак, охлаждаемый водой.

При этом свариваемые листы собираются с зазором в 2–3 мм и через каждые 1,2–1,5 м скрепляются сборочными планками путем прихватки короткими сварными швами.

https://www.youtube.com/watch?v=vIIzXgk9VMk\u0026pp=ygWNAdCh0LLQsNGA0LrQsCDQv9C-0LQg0YTQu9GO0YHQvtC8OiDRgtC10YXQvdC-0LvQvtCz0LjRjyDQuCDQvtGB0L7QsdC10L3QvdC-0YHRgtC4IHwg0JrQsNC6INC_0YDQsNCy0LjQu9GM0L3QviDQstCw0YDQuNGC0Ywg0L_QvtC0INGE0LvRjtGB0L7QvA%3D%3D

Таблица 25

Выполнение сварных соединений (размеры в мм)

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом
Сварка под флюсом: технология и особенности | Как правильно варить под флюсомСварка под флюсом: технология и особенности | Как правильно варить под флюсомСварка под флюсом: технология и особенности | Как правильно варить под флюсом

В тех случаях, когда конструкция изделия допускает приварку подкладки, с обратной стороны шва производится сварка на стальной подкладке.

Стальную подкладку плотно подгоняют к плоскости свариваемых кромок и прикрепляют короткими швами ручной дуговой сваркой. Затем автоматической сваркой выполняют основной шов, проваривая одновременно основной металл и металл подкладки.

Размеры подкладки зависят от толщины свариваемых кромок. Обычно подкладку изготовляют из стальной полосы шириной 20–60 мм и толщиной 4–6 мм.

Сварка после предварительного наложения подваренного шва вручную применяется для упрощения процесса сборки изделия.

Стыковая сварка двусторонняя дает более высококачественный шов, обеспечивая хороший провар шва даже при некотором смещении свариваемых кромок. При изготовлении строительно-монтажных конструкций двусторонний способ является основным.

Стыковое соединение сваривают автоматом сначала с одной стороны так, чтобы глубина проплавления составляла 60–70 % толщины металла шва. Зазор между кромками должен быть минимальным, не более 1 мм. Сварку выполняют на весу, без подкладок и уплотнений с обратной стороны стыка.

При невозможности выдержать зазор между кромками менее 1 мм принимают меры по предупреждению подтекания жидкого металла, так же как это делают при односторонней сварке, т. е.

производят сварку на флюсовой подушке, медной подкладке, на стальной подкладке или применяют прихватку ручной дуговой сваркой.

Тавровые и нахлесточные соединения сваривают вертикальным электродом при положении шва «в лодочку» или наклонным электродом, если один из листов занимает горизонтальное положение (рис. 89).

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Рис. 89. Схема полуавтоматической сварки под флюсом:

а – стыковых швов; б – в положении «в лодочку»; в – тавровых швов; г – нахлесточных швов

В зависимости от толщины свариваемых кромок и назначения соединения сварка может быть выполнена без разделки кромок, с одно– или двусторонней разделкой кромок.

При зазоре между кромками менее 1 мм сварку «в лодочку» выполняют на весу. При больших зазорах сварку производят на флюсовой подушке или на подкладках.

Допускается заделка зазора асбестовым уплотнением или подварка шва с обратной стороны.

Сварка «в лодочку» обеспечивает равномерное проплавление свариваемых кромок и получение качественного шва большого сечения за один проход.

В большинстве случаев для выполнения сварного соединения изделие устанавливают на кантователь.

Сварку тавровых и нахлесточных соединений при горизонтальной или вертикальной полке производят наклонным электродом с углом наклона к горизонтальной полке 20–30°.

В качестве недостатка такого способа сварки можно назвать невозможность получить шов с катетом более 16 мм, что иногда приводит к необходимости многослойной сварки. При полуавтоматической сварке перемещение дуги вдоль свариваемого шва производится сварщиком либо на себя, либо справа налево.

Держатель опирают на кромки свариваемого изделия и тем самым поддерживают постоянство вылета электродной проволоки в пределах 15–25 мм.

Благодаря повышенной плотности тока и более сосредоточенному вводу теплоты глубина провара при шланговой сварке возрастает на 30–40 % Устойчивость горения дуги также значительно повышается, что позволяет производить сварку металла малых толщин (0,8–1,0 мм) и сварку швов с катетом до 2 мм при сварочных токах 80–100 А.

https://www.youtube.com/watch?v=vIIzXgk9VMk\u0026pp=YAHIAQE%3D

Таблица 26

Типичные режимы сварки под флюсом угловых швов металлоконструкций «в лодочку»

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Таблица 27

Типичные режимы автоматической сварки под флюсом стыковых швов металлоконструкций на флюсовой подушке

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

При стыковых швах с зазором более 1,0–1,5 мм сварку производят на флюсовой подушке или на подкладках. При этом держателю придают поперечные колебательные движения.

Тавровые и нахлесточные соединения рекомендуется выполнять электродной проволокой диаметром 1,6–2,0 мм на постоянном токе обратной полярности. Зазор между свариваемыми кромками не должен превышать 0,8–1,0 мм.

Качественный шов за один проход шланговой сваркой можно получить при катете шва не более 8 мм. При катетах более 8 мм производят многослойную сварку шва.

Данный текст является ознакомительным фрагментом.

Сварка под флюсом: сферы применения, оборудование, выбор режимов

Из этого материала вы узнаете:

  • Преимущества и недостатки сварки под флюсом
  • Сферы применения сварки под флюсом
  • Необходимое оборудование для сварки под флюсом
  • Виды флюсов для сварки
  • Технология сварки под флюсом
  • Выбор подходящего режима сварки под флюсом
  • Проблемы, возникающие в процессе сварки под флюсом

Сварка под флюсом является технологией соединения металлических деталей/заготовок. Существуют различные способы сваривания: ручной, полуавтоматический, автоматический. Соответственно, используется различное оборудование, подбираются определенные режимы.

Благодаря своим неоспоримым преимуществам: точность, скорость, защита шва от коррозии, сварка под флюсом используется практически во всех сферах металлообработки: от машиностроения до изготовления труб большого диаметра и использования на мелких промышленных предприятиях. Как все происходит по технологии и какие проблемы часто возникают в ходе работы, подробно расписано в статье ниже.

Преимущества и недостатки сварки под флюсом

Сварщики знают о негативном воздействии кислорода при сварке и его воздействии на долговечность изделия и качество сварного соединения. Окислительные процессы являются причиной появления трещин на металлических сварных соединениях.

Соблюдение технологичности процесса помогает избежать таких негативных моментов. Одной из них является сварка под флюсом. Это один из самых эффективных способов сварки металлов, обеспечивающий прочное и ровное сварное соединение.

Но чтобы выполнить такой шов, необходимо наличие специального оборудования и соответствующий уровень квалификации сварщика.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Соединить детали из нержавейки, алюминия и меди зачастую просто невозможно без использования автоматической дуговой сварки под слоем флюса, который выполняет функцию защиты от воздействия кислорода.

То же самое касается и классического метода с использованием ручной или полуавтоматической сварки.

Плавление металла и соединение заготовок может происходить только при достижении высокой температуры электрической дуги.

Дуговая сварка зачастую сопровождается искрами и брызгами, а также повышенной задымленностью и интенсивным ультрафиолетовым излучением. При использовании технологии сварки под слоем флюса такие факторы исключаются, так как вся расплавленная ванна полностью находится под его толстым слоем, что делает этот процесс безопасным.

Помимо этого, нейтрализация дыма и излучения делает сварку под флюсом более безопасной относительно других способов сварных соединений. Операторам, осуществляющим контроль сварки, не нужно надевать защитную одежду, для этого подойдет и стандартная рабочая униформа.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Так как при дуговой сварке под флюсом используется электричество, то ее не нужно наносить под давлением. Помимо этого, повышенный уровень тепла, выделяемый в процессе сварки, позволяет соединять толстостенные заготовки.

Особенностью сварки под флюсом является ее высокая скорость осаждения металла. Именно это свойство может обеспечить глубокую сварную ванну. Сварка с применением порошковой проволоки под флюсом может ускорить осаждение по сравнению с использованием сплошной проволоки.

Читайте также:  Принцип работы плазмореза: устройство, виды, советы по выбору | Как работает плазморез

Помимо этого, большая концентрация тепла способствует ускорению сварки, скорость может достигать 5 м/мин. В результате структура выполненного шва становится более вязкой, долговечной, однородной и приобретает повышенную коррозионную стойкость. Кроме этого, сварное соединение выглядит более сглаженным и аккуратным.

Самой сложной задачей при сварочных работах является избежание деформаций сварного шва. Причиной служит расширение и сжатие металла, а также неоднородных цветных металлов. Так как при сварке под слоем флюса применяется ускоренное сваривание с повышенной тепловой концентрацией, то это позволяет избежать таких нарушений.

Такая технология сварки выполняется не только в помещении, но и на открытом пространстве. Даже при небольшом ветре дуговую сварку под флюсом можно выполнить без нарушений требований, предъявляемых к таким видам работ.

Имеется и ряд недостатков:

  • Повышенная сложность настройки оборудования.
  • Невозможность проведения сварочных работ в потолочном и вертикальном положениях.
  • Неровные края поверхностей свариваемых деталей, которые не позволяют выполнять качественное сварное соединение.

Кроме того, проконтролировать качество сварки сложно, так как сварное соединение находится под слоем флюса.

Сферы применения сварки под флюсом

Однако такая технология в промышленных масштабах оправдывает себя, так как обеспечивает повышение производительности труда, улучшает качество сварного соединения и надежность металлоконструкции в целом.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Сварка под слоем флюса нашла широкое применение в следующих промышленных отраслях:

  • Судостроение. Корпус судна состоит из предварительно сваренных секций, изготовленных с помощью автоматической или полуавтоматической сварки. С помощью технологии секционной сборки значительно сокращаются сроки изготовления. В промышленном масштабе проведение сварочных работ при соблюдении технологии обеспечивает высокое качество сварного соединения.
  • Нефтедобывающая отрасль. Методика позволяет производить сборку резервуаров из заготовок на месте при помощи сваривания стальных листов в полотнища рулонного типа.
  • Изготовление труб большого диаметра для водных коммуникаций, нефтяной и газовой отрасли.
  • В машиностроительной индустрии при массовом производстве металлоконструкций: вагонеток, вагонов, автомобильных колес и подобных изделий.

Существуют технологии сваривания цветных металлов, алюминия, титана и его сплавов, что дает возможность использовать сварку под флюсом при производстве высоконадежных конструкций, летательных аппаратов, бытовой и промышленной аппаратуры.

Для выполнения автоматической дуговой сварки под слоем флюса необходимо обеспечить рабочее место:

  • Сварочной плитой. Ее следует устанавливать на бетонную платформу, потому что она изготавливается из материалов, которые устойчивы не только к высоким температурам, но к резким температурным перепадам.
  • Наплавной проволокой. Ее толщина обычно составляет от 0,3 до 12 мм, состоит из такого же материала, что и свариваемое изделие.
  • Неплавящимся электродом, который включает металлический сердечник и керамическую оболочку.
  • Системой, выполняющей подачу флюсовых частиц, состоящую из шланга необходимого диаметра и резервуара.
  • Системой контроля. У автоматических установок она более модернизирована, чем у полуавтоматических.

При крупносерийных масштабах производства обычно используют специальный сборочный автоматический стенд, который позволяет не только сваривать любые конструкции, но и обеспечивает надежную фиксацию заготовок в том положении, в котором они должны остаться в готовом изделии. Такое оборудование обеспечивает повышенную надежность закрепления заготовок и позволяет исключить любые отклонения формы и соединения всей конструкции, несмотря на то, что сварщик при работе не видит шов.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

Такая технология является идеальной при нанесении угловых и стыковых сварных соединений, процесс происходит быстро, с обеспечением требуемых параметров качества и надежности соединения. Управление конструкцией происходит в автоматическом режиме, поэтому стоит довольно дорого. В некоторых случаях, в качестве альтернативного варианта, стенд может быть оснащен мобильными головками.

Цена на полуавтомат намного ниже, однако такое оборудование требует намного большего участия сварщика в процессе.

Оператор должен постоянно следить за вылетом электрода и направлением проволоки, несмотря на то, что последняя подается в автоматическом режиме.

Мастер самостоятельно подбирает угол наклона электрода, варьирует скорость при нанесении шва и мощность напряжения согласно специфике обрабатываемого изделия.

Ручным оборудованием чаще всего пользуются любители-сварщики в частных мастерских, хотя бывают и особые случаи применения, если оно наиболее удобно из всех вариантов для сварки изделий. Ручную сварку можно применять из любых положений и даже в неудобных труднодоступных местах.

Виды флюсов для сварки

По методу изготовления флюсы могут быть:

  • плавлеными;
  • неплавлеными (керамическими).

Первый тип флюсов (плавленые) изготавливается из смеси кварцевого песка и шлакообразующих марганцевых руд. Сначала их размалывают, перемешивают, а затем расплавляют и гранулируют. Такой вид флюсов является относительно экономичным и в основном применяется для сваривания заготовок из низколегированных сталей.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

  • В состав неплавленого вида флюса входят соли амфотерных металлов и окислителей, которые сначала измельчаются, перемешиваются с жидким стеклом до образования однородной массы, а затем гранулируются и прокаливаются.
  • Керамический вид обладает мелкодисперсной порошкообразной структурой, используется для сварки под флюсом высоколегированных сталей и сплавов на их основе, причем для конкретной марки свариваемой стали подбирается определенный состав флюса.
  • По химическому составу флюсы подразделяют на:
  • оксидные;
  • солевые;
  • смешанные.

В состав оксидных флюсов, используемых для сваривания низкоуглеродистых сталей, входят кремний и оксиды активных металлов.

Солевой тип флюсов содержит соли хлоридов и фторидов, используется для электросварки стали, легированной хромом и никелем, а также титана.

В смешанных флюсах, предназначенных для сварки деталей из разных металлов или многокомпонентных сплавов, используются различные пропорции сочетания солей и оксидов металлов.

Технология сварки под флюсом

При автоматической сварке под слоем флюса скорость перемещения и траектория электрода, как и подача проволоки, регулируется управляющим процессором, функция оператора заключается в отслеживании состояния контроллеров процесса на случай необходимости экстренного отключения сварочного оборудования.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

При полуавтоматической сварке под слоем флюса происходит автоматическое регулирование силы тока сварки, угла наклона электрода относительно линии сварки и скорости подачи проволоки, а ведение дуги выполняет сам сварщик вручную при помощи дистанционного управления или рукоятки. При использовании сварочного полуавтомата появляется возможность изменять некоторые параметры тока вручную непосредственно во время выполнения сварного соединения.

Метод ручной сварки под слоем флюса используют при наличии небольших сварочных установок, в которых система подачи флюса встроена в неплавящийся электрод. На сварщика возлагается обязанность регулировать в ручном режиме при помощи специальных кнопок скорость движения электрода и угол его наклона, подачу флюса и силу сварочного тока, а также следить за правильной траекторией движения.

Существует общая последовательность операций при сварке под флюсом:

  1. Удаление с поверхности заготовок оксидной пленки.
  2. Закрепление детали на сварочной плите.
  3. Выбор режимов настройки сварочного оборудования.
  4. Заполнение резервуара флюсом.
  5. Установка бухты с наплавной проволокой, присоединение свободного конца к электроду.
  6. Непосредственно сваривание деталей.
  7. Сбор неизрасходованного флюса после остывания заготовок и зачистка сварочного шва от шлака.

Во избежание холостой работы электрода и повреждения деталей следует особенно обращать внимание на расход флюса и проволоки.

Выбор подходящего режима сварки под флюсом

Выбор режимов сварки под слоем флюса зависит от таких показателей, как выбор способа удерживания сварочной ванны, планируемое количество проходов при нанесении будущего шва, толщина кромочных поверхностей и метод их разделки.

Помимо этого, выбор технологии сварки зависит от вылета электрода и положения самого изделия, скорости сварки, диаметра сечения проволоки, напряжения и силы тока.

При расчете перед обработкой для каждой детали используются индивидуальные параметры.

К примеру, если толщина заготовки не больше 30 мм, то для сварки под слоем флюса стыкового шва, что бывает чаще всего, будет достаточно одного одностороннего прохода. При большей толщине шов следует проварить с обеих сторон и желательно ввести дополнительные проходы.

Смысл одностороннего сваривания может быть лишь в том случае, если используется материал, который не боится перегревания и на швах не образуются сварочные трещины.

Для каждого конкретного задания можно выделить несколько параметров, которые следует всегда учитывать при подборе режимов сварки под слоем флюса:

  1. 30
  2. 5
  3. 950–1000
  4. 40–44
  5. 16–18

Рекомендуемые табличные значения можно использовать для сварки под флюсом сталей с высоким, средним и низким содержанием углерода.

При сваривании тонколистового металла (до 6 мм) разделка кромочных поверхностей при подготовке изделия к обработке не производится. Для этого перед работой необходимо разместить свариваемые поверхности с минимальным зазором.

При толщине стенки свариваемых деталей от 10 до 12 мм следует, наоборот, оставить зазор, благодаря этому сварное соединение будет более качественным, а также приведет к уменьшению лишнего объема расплавленного металла.

В обоих случаях используются особые способы закрепления заготовок – или при помощи подкладки, или с добавлением подварочного шва либо методом предварительной сборки «в замок».

Для сваривания металлических листов толщиной до 10 мм лучше использовать подкладку. Обычно она представляет собой стальную пластину толщиной от 3 до 6 мм и шириной от 3 до 5 см.

Метод сварки «в замок» применяется для соединения ответственных конструкций, при которых прожог материала считается недопустимым. Также он является лучшим способом соединения тяжелых и объемных конструкций. Необходимо сказать, что подварочный шов редко используется при сварке, его применяют, только когда перекантовку изделия осуществить невозможно.

Проблемы, возникающие в процессе сварки под флюсом

Новичок-сварщик, неукоснительно соблюдающий инструкции, все равно может столкнуться с такими проблемами, которые ему непонятны.

Самый образный пример – поры на сварном шве, которые говорят о том, что под слоем флюсом оказался газ.

Чаще всего пористость появляется из-за наличия углекислого газа или водорода, в редких случаях из-за азота, поры которого появляются только при обработке микролегированных сталей, если такие материалы обладают нитридным упрочнением.

Рекомендуем статьи

С такой же проблемой можно столкнуться, если металл разрезался плазменным резаком. Если сварочная ванна имеет малое процентное содержание раскислителей, то углекислый газ может проникать под слой флюса.

Чтобы исключить образование пор, жидкую ванну обогащают как минимум 0,2 % кремния.

Кроме того, раскисление может произойти при понижении температуры и, наоборот, концентрация углекислого газа будет расти с ее повышением.

Самой частой причиной появления пор при сварке под слоем флюса является наличие водорода, который появляется из-за недостаточной зачистки кромочных поверхностей от ржавчины и других загрязнений, а также из-за влажного флюса.

Напоследок стоит сказать, что плавкий материал, который используется при сварке под слоем флюса, находится в твердом гранулированном состоянии в течение всего сварочного процесса, что позволяет на 50–90 % повторно его использовать при последующей сварке.

Сварка под флюсом: автоматическая, полуавтоматическая и ручная, технология процесса и оборудование

Сварка под флюсом – это способ сварки деталей из высоколегированной марганцевой, никелевой или фторидной стали, при котором сварочная ванна и шов защищены от окисления слоем флюса в виде порошка или гранул.

Читайте также:  Что такое НАКС: виды работы, как получить сертификат, уровни аттестации сварщиков

Процесс формирования шва протекает в газовой полости под слоем непрерывно подаваемого флюса. Кроме функции защиты от окисления, флюс также легирует формируемый шов марганцем и кремнием, повышая его прочность и формируя соединение с высокой степенью однородности.

ГОСТ на сварку флюсом 8713-79 устанавливает размеры и типы сварных соединений, а также способы наложения шва под флюсом.

Виды флюсов и их особенности

По способу изготовления флюсы бывают:

Плавленые флюсы изготавливают из шлакообразующих марганцевых руд и кварцевого песка путем размалывания, смешивания и расплавления с последующим гранулированием. Такие флюсы экономичны и хорошо подходят для сварки деталей из низколегированной стали.

Керамические (неплавленные) флюсы изготавливают из окислителей и солей амфотерных металлов, которые измельчают, смешивают с жидким стеклом до однородного состояния, после чего гранулируют и прокаливают.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсомПримерная стоимость керамических флюсов на Яндекс.маркет

Керамические флюсы имеют мелкодисперсную порошкообразную структуру, они применяются для сваривания сложных высоколегированных стальных сплавов, при этом состав флюса подбирается под конкретную марку свариваемой стали.

По химическому составу флюсы бывают:

  • солевые;
  • оксидные;
  • смешанные.

Солевые флюсы содержат соли фторидов и хлоридов, применяются для электросварки титана и стали, легированной никелем и хромом. Оксидные флюсы содержат оксиды активных металлов и кремния, применяются для сварки низкоуглеродистой стали. Смешанные флюсы содержат оксиды и соли металлов в различных пропорциях, применяются для сваривания многокомпонентных сплавов или деталей из разных металлов.

Описание технологии процесса

Существует три основных способа сварки под флюсом:

  • автоматический;
  • полуавтоматический;
  • ручной.

При автоматической сварке траектория и скорость движения электрода, а также скорость подачи проволоки регулируется управляющим процессором, рабочие участвуют только в качестве контролеров процесса для экстренного отключения сварочного агрегата.

Полуавтоматическая сварка под флюсом предполагает, что скорость подачи проволоки, сила тока сварки и угол наклона электрода к линии сварки регулируются автоматически, а ведение дуги осуществляется сварщиком вручную – через рукоятку или дистанционное управление. Полуавтоматический сварочный агрегат позволяет вручную изменять отдельные параметры тока непосредственно во время процесса сварки.

  • Сварка под флюсом вручную применяется в небольших агрегатах, где система подачи флюса встроена в неплавящийся электрод, при этом сварщик регулирует направление движения, угол наклона и скорость хода электрода в ручном режиме, специальными кнопками управляя подачей флюса и силой тока сварки.
  • Общий порядок действий при сварке под флюсом:
  1. С поверхностей деталей снимается оксидная пленка.
  2. Детали закрепляются на сварочной плите.
  3. Выбираются настройки и режим сварочного аппарата.
  4. Заполняется резервуар для флюса.
  5. Устанавливается бухта наплавной проволоки, конец которой заправляется в электрод.
  6. Происходит процесс сваривания.
  7. После остывания деталей собирается неизрасходованный флюс, и шов очищается от шлака.

Важно следить за расходованием проволоки и флюса, чтобы не допустить работы электрода вхолостую и повреждения деталей.

Оборудование для сварки

Для сварки флюсом потребуются стационарные условия и оборудование:

  • сварочная плита;
  • наплавная проволока;
  • неплавящийся электрод;
  • система подачи флюса;
  • система контроля.

Сварочные плиты выполняются на бетонном основании из жаростойких материалов с возможностью закрепления деталей. Проволока берется из материала свариваемых деталей, толщина от 0,3 до 12 мм. Электрод изготавливается из вольфрамового сплава с керамической оплеткой.

Система подачи флюса представляет собой резервуар и шланг, конец которого отстоит от электрода на 10-30 см. Диаметр шланга подачи флюса должен позволять гранулам свободно сыпаться перед электродом.

Сварка под флюсом: технология и особенности | Как правильно варить под флюсомСхема процесса автоматической сварки под слоем флюса

Автоматическая и полуавтоматическая сварка под флюсом контролируется программным обеспечением, регулирующим направление и скорость движения электрода вдоль линии сваривания.

Выбор режима сварки

В зависимости от толщины и металла свариваемых деталей выбирается режим сварки под флюсом. Для каждого режима существует свой диапазон напряжения, силы тока сварки и диаметр проволоки. Скорость формирования шва колеблется в пределах от 6 до 100 метров в час.

Если толщина свариваемых деталей от 2 до 10 мм, то выбирается режим сварки на стальной подкладке под стыком деталей. Режим на флюсовой подушке подходит для сварки деталей толщиной 10-25 мм, а сварка деталей толщиной 16-70 мм выполняется в режиме предварительной ручной проварки нижней части шва.

С увеличением толщины свариваемых деталей растет диаметр проволочного электрода и сварочный ток, но уменьшается скорость формирования сварного шва.

Сила тока сварки (А) зависит от толщины проволоки (мм) следующим образом:

  • 2 мм – 200-400 А;
  • 3 мм – 300-600 А;
  • 4 мм – 400-800 А;
  • 5 мм – 700-1000 А;
  • 6 мм – 700-1200 А.

Напряжение сварки существенно увеличивается только при толщине деталей свыше 25 мм.

Достоинства и недостатки

К преимуществам сварки под флюсом относятся:

  • высокая степень автоматизации процесса;
  • возможность проведения сварки под большой силой тока;
  • высокая скорость сварки;
  • качественный шов без окислов и раковин;
  • возможность увеличения сварной ванны для более качественного провара.

Системы автоподачи флюса и сохранение постоянного расстояния от электрода до шва позволяет сваривать сложные детали с минимальным участием рабочих. Защитный слой флюса не дает расплавленному металлу разбрызгиваться, что позволяет производить сварку под высокими токами, многократно увеличивая скорость формирования и качество шва.

Однородность шва достигается за счет изоляции сварной ванны от кислорода воздуха, а также из-за легирования шва компонентами флюса, которые можно подобрать специально для материала свариваемых деталей.

Также сварка под флюсом дает возможность использования одновременно двух электродов, расположенных на расстоянии 10-20 мм друг от друга и питаемых от одного источника тока – это позволяет сделать больше сварную ванну под флюсом, увеличив таким образом скорость сварки и степень однородности готового изделия.

К недостаткам сварки под флюсом относят трудности контроля процесса и технологическую сложность. Агрегаты для сварки под флюсом занимают большие площади и требуют обслуживания квалифицированными кадрами.

Сварной шов формируется под слоем флюса и у сварщика нет возможности контролировать качество шва в режиме реального времени.

Избежать брака можно путем дополнения агрегата ультразвуковыми или лазерными системами контроля наличия дефектов.

Все, что нужно знать о сварке под флюсом

Сварка под флюсом: технология и особенности | Как правильно варить под флюсом

До момента изобретения первых флюсовых составов, случившегося во второй половине XIX века, соединить металлические детали между собой зачастую можно было только ковкой. Ковка требовала наличия оборудованной кузницы и определенных навыков, тогда как сварка для обывателя несколько проще и при этом не отличается в сторону ухудшения надежности. При этом перед самостоятельными опытами в теорию вникнуть все-таки стоит.

Большинство металлов, взаимодействуя с атмосферным кислородом, быстро покрываются тонким слоем оксида. С одной стороны, он даже обеспечивает некоторую защитную функцию, не допуская коррозии внутренних слоев металла, но для сварки оксид представляет большую проблему, поскольку не дает получить доступ к металлическому изделию напрямую.

Оксидный слой образуется заново довольно быстро, потому варить металл без какой-либо защиты поверхности от доступа кислорода непродуктивно. Тот или иной состав, которым покрывается рабочая поверхность, называется сварочным флюсом – он может состоять из различных компонентов, нередко умеет разрушать уже образовавшийся оксид.

Известно не менее полусотни видов флюсов, однако, такое разнообразие не значит, что можно брать любой из них – у каждого есть специфические особенности. Ко всем существующим маркам выдвигаются четкие требования, прописанные в ГОСТе 9087-81.

Сущность сварки под флюсом как процесса заключается в том, что электрическая дуга горит под флюсовой смесью, а не только там, где мы ее видим. Горение дуги возможно благодаря подаче на электродную проволоку высокого напряжения.

Вокруг дуги образуется облако газов, образовавшихся при плавке как флюса, так и самого металла.

Сама сварка и создаваемые с ее помощью соединения описаны другим ГОСТом – 8713-19.

Сварка не во всех случаях обязательно должна происходить с защитой рабочей поверхности флюсом, и в некоторых случаях использование флюсовых смесей игнорируется. Тем не менее в профессиональной сварке флюсы чаще все-таки используются, потому что у такого метода масса преимуществ:

  • электрическая дуга приобретает особую стойкость и стабильность;
  • меньше энергии тратится на нагревание металлов и разбрызгивание, потому коэффициент полезного действия возрастает, как и экономия электричества;
  • сварка с флюсом на токах высокой интенсивности позволяет плавить металл значительно быстрее, благодаря чему возрастает и эффективность;
  • металл в процессе сварки не угорает, потому шов получается более качественным и аккуратным;
  • сварщик пребывает в условиях повышенной безопасности, так как пламя дуги по большей мере «спрятано» с обратной стороны флюсового слоя.

Если бы сварка под флюсом была абсолютно безупречным методом, она давно стала бы безальтернативным решением. Тем не менее во многих случаях сварщики до сих пор обходятся без флюсовых составов, а это значит, что у методики есть и определенные минусы. Их всего два, но иногда они могут сыграть определяющую роль:

  • шов скрыт флюсом до тех пор, пока вы полностью не закончите работу, а значит, в процессе выполнения нет никакой возможности оценить то, что получается;
  • и сами флюсовые смеси, и другие расходники, используемые при этом способе сварки, провоцируют существенное удорожание работы.

Флюсы применяются как для ручной, так и для автоматической дуговой сварки, чтобы защитить обрабатываемую поверхность от ненужного образования оксида, угара металла и повысить качество получаемого шва. При этом специфика применения флюса для разных нужд несколько отличается.

При ручной сварке варимую деталь обычно покрывают слоем флюсового порошка толщиной ориентировочно в полсантиметра. Экономить на расходнике, хоть он и недешевый, неразумно – тонкий слой флюса может привести к низкокачественной проварке и последующему образованию трещин. Досыпать флюс следует по мере перемещения электрода по заготовке.

Промышленный метод немного отличается: если вы варите полуавтоматическим или автоматическим способом, то и флюс к месту варения будет подаваться по особой трубке. Перестараться с количеством флюсового порошка в такой ситуации сложно, потому что в составе агрегата предусмотрен пневматический отсос лишнего порошка.

Тот флюс, который действительно необходим для работы, превращается в шлаковый слой, который удаляют уже после завершения работы.

Сварка под флюсом покажет себя с лучшей стороны только в том случае, если максимально правильно подобрать для нее все необходимое. Это утверждение касается как оборудования, так и флюсовых составов.

В промышленности чаще всего используется специальный автоматический стенд сборочного типа, позволяющий не только варить любые конструкции, но и надежно фиксировать их в том положении, в каком они должны будут пребывать постоянно после завершения работы. Подобное оборудование отличается повышенными показателями надежности крепления элементов – это позволяет гарантировать отсутствие отклонений по швам или форме будущего изделия, тем более что мастер в процессе работы сам шов не видит.

Такой агрегат удобен для выполнения стыковых и угловых швов, работает быстро, обеспечивает высокое качество и надежность соединений. Конструкция управляет собой сама, потому стоит дорого – в качестве альтернативы на стенд иногда устанавливают мобильные головки.

Читайте также:  Газовые редукторы: виды и чем они отличаются | Rак выбрать подходящий редуктор для сварки

Полуавтомат стоит ощутимо дешевле, но требует от оператора куда большей вовлеченности в процесс.

Направление проволоки и контроль вылета электрода целиком и полностью перекладываются на плечи сварщика, хотя подача проволоки все же производится автоматически.

Мощность напряжения, скорость перемещения по шву и угол наклона электрода – это те параметры режима сварки, которые мастер должен выбрать самостоятельно в зависимости от специфики обрабатываемой детали.

Ручное оборудование чаще применяется в небольших мастерских или любителями, хотя есть и специфические сферы применения, где это наиболее удобный вариант для выполнения поставленной задачи. Так, ручная сварка возможна даже в труднодоступных местах и в любых положениях.

Подобное оборудование стоит сравнительно недорого, потому широко используется непрофессионалами.

Сварочные флюсы бывают различных видов, их маркировка строго привязана к действующему ГОСТу. Классификация таких составов возможна по разным признакам, мы рассмотрим лишь некоторые из них.

В первую очередь все флюсы делятся на классы в зависимости от материала, для сварки которого они годятся. Для высоколегированной стали нужен один класс составов, для углеродистой или легированной – другой.

Третий, отдельный класс флюсов, выпускается производителями специально для цветных металлов и сплавов – меди, бронзы и так далее.

По способу производства флюсы делятся на керамические и плавленые. Керамические хороши тем, что обеспечивают повышенные качества шва и обладают легирующими свойствами.

Производится масса путем экструзии сыпучих керамических компонентов с последующим добавлением жидкого стекла.

Плавленые флюсы отличаются структурой, напоминающей пемзу или стекло, производятся они плавлением и спеканием ингредиентов с дальнейшим образованием гранул.

Существует также классификация флюсов по их химическому составу. Выделяют следующие классы.

  • Солевые составы состоят из хлоридов и фторидов. Типичная сфера их применения – варение активных металлов и шлакового переплава.
  • Оксидные смеси представляют собой металлические окислы с некоторой примесью соединений фтора. Это оптимальный выбор для сварки фтористых и низколегированных сталей.
  • Смешанные флюсы, как следует из названия, представляют собой комбинацию солевых и оксидных. Лучше всего такое вещество подходит для варки легированных сталей.

Классифицируют флюсовые смеси также и по тому, в каком виде они продаются. Гранулы и порошок являются наиболее характерными формами флюса, но только в том случае, если сварка будет электрической.

Состав может приобретать форму пасты или даже газа, но тогда он предназначен для более редкой газовой сварки.

Некоторые начинающие сварщики по привычке стремятся определить еще и лучшего производителя флюсов, по традиции отдавая предпочтение составам импортных марок.

На самом деле при выборе флюса это самый последний фактор, на который стоит обращать внимание, – куда важнее правильно подобрать смесь по всем остальным критериям.

Выбор режима сварки зависит от различных показателей, например, способа разделки кромок, их толщины, планируемого количества проходов по будущему шву и метода удерживания сварочной ванны.

Сила и напряжение тока, диаметр сечения проволоки, скорость сварки, положение самого изделия и вылет электрода тоже оказывают влияние на выбор тактики обработки заготовки.

Расчет параметров для каждой заготовки всегда производится индивидуально.

Например, для наиболее ходовой сварки стыковых швов хватит одного одностороннего прохода под флюсом при условии, что толщина заготовки не превышает 3 см. Если детали толще, шов варят с двух сторон и могут добавлять дополнительные проходы. Одностороннее варение актуально лишь в тех случаях, если материал не боится перегрева, а швы не должны дать сварочные трещины.

Если свариваемые листы совсем тонкие (не толще 6 мм), разделка кромок как этап подготовки к дальнейшей обработке не выполняется, при этом соединяемые детали прикладывают друг к другу как можно ближе, стараясь минимизировать зазор до предела.

При толщине заготовок порядка 1-1,2 см зазор, наоборот, оставляют – это поможет добиться повышенного качества шва и заодно уменьшить избыток расплавившегося металла.

В любом из описанных случаев фиксация деталей требуется особая – либо подкладкой, либо подварочным швом, либо предварительной сборкой «в замок».

Подкладка является наиболее ходовым решением для варения металлических листов толщиной не более 1 см. Как правило, она стальная, толщиной 3-6 мм при ширине 3-5 см.

Сварку «в замок» используют для соединения важных деталей, где прожог материала недопустим. Кроме того, это лучший метод соединения больших и тяжелых конструкций.

Что же касается подварочного шва, то это сравнительно редкий режим сварки, который уместен лишь в том случае, если перекантовка изделия не представляется реальной.

Для начала надо подготовить сварные кромки – дуговая сварка под флюсом не выдвигает каких-либо требований по способу их подготовки, это может быть как механическая обработка, так и термическая резка.

Сама кромка и участки непосредственно около нее подлежат обязательной очистке от пленок оксида или масла, ржавчины и иных загрязнений.

Ширина зоны зачистки обычно колеблется в пределах 3-4 см от края, подлежащего свариванию.

Перед тем как начинать варить шов, будущую конструкцию собирают на специальном стеллаже так, чтобы ее фрагменты находились в правильном положении по отношению друг к другу. Фиксация деталей осуществляется прихватками и технологическими планками.

Средняя длина прихватки составляет 5-10 см, они располагаются с интервалом 50-55 см по линии будущего соединения. Если необходимо сварить угловой шов, процедуру выполняют на выводных технологических планках.

Для всех случаев используется проволока толщиной от 3 до 5 мм.

Точная технология сварки очень зависима от того, как выглядят детали по отдельности и как они должны быть соединены между собой.

На специфику процедуры влияют также и многочисленные другие показатели, среди которых конфигурация и протяженность швов, химический состав металла и его толщина, а также используемое оборудование.

Даже несмотря на строгое следование инструкциям, новичок может столкнуться с некоторыми проблемами, причина возникновения которых ему неизвестна.

Наиболее яркий пример – появление пор на шве, свидетельствующих о том, что под флюсом оказался газ, которого там не должно было быть. В большинстве случаев пористость вызвана присутствием водорода либо углекислого газа, реже корень зла – азот.

Азотистые поры возможны только при работе с микролегированной сталью, если материал имеет нитридное упрочнение.

Такая же проблема встречается, если заготовку резали плазменным резаком. Углекислый газ попадает под флюс в том случае, если в сварочной ванне недостаточно раскислителей. Для препятствования образованию пор в жидкую ванну добавляют хотя бы 0,2% кремния.

Также реакция раскисления происходит при снижении температуры, и наоборот – углекислого газа будет больше при ее повышении. Наиболее частой первопричиной пор является водород, источником для него часто становится недостаточная чистка кромок от загрязнений или ржавчины.

Кроме того, источником водородных пор в заваренном шве может оказаться влажный флюс.

В следующем видео вас ждет автоматическая сварка под флюсом двутавровой балки на заводе.

Дуговая сварка под флюсом — Технология на vc.ru

Дуговая сварка под флюсом

{«id»:788178,»gtm»:null}

Дуговая сварка под флюсом (или сварка с использованием сварочного флюса) — это метод сварки, при котором между сварочным электродом и свариваемым материалом создается дуга.

Сущность и параметры процесса

Сварка под флюсом SAW (Submerged Arc Welding) выполняется обычно сварочными автоматами. В качестве электрода используется сварочная проволока, подвод тока к которой осуществляется скользящим контактом. Подача проволоки в зону сварки производится подающими роликами.

Зона сварки закрыта плотным слоем флюса, который высыпается из бункера во время движения сварочного автомата. В расплавленном флюсе газами и парами флюса и расплавленного металла образуется полость — газовый пузырь, в котором горит сварочная дуга. Кристаллизация расплавленного металла сварочной ванны приводит к образованию сварного шва.

Затвердевший флюс образует на поверхности шва шлаковую корку.

Сварку ведут на токах, значительно превышающих силу тока при ручной сварке; обычно Iсв =500…1000 А, возможно 2000 А. Это дает существенные преимущества сварки под флюсом по сравнению с ручной.

Флюс представляет собой неметаллический гранулированный порошок, который эффективно защищает расплавленный металл от воздуха. Металлургические взаимодействия между расплавленным металлом и флюсом способствуют получению требуемого химического состава и механических свойств металла шва.

Сварочный флюс является основным компонентом процесса и выполняет несколько функций:

➣ Защита сварочной зоны: флюс предотвращает окисление и загрязнение сварочного шва воздухом или другими вредными веществами, такими как окислы, пыль или газы.

➣ Создание дополнительного материала: флюс может добавляться в виде порошка или покрытия электрода, чтобы увеличить его эффективность и прочность сварного соединения.

➣ Регулировка сварочного процесса: флюс может контролировать скорость и глубину проникновения сварочной дуги, а также влиять на качество сварного шва.

Разновидности дуговой сварки под флюсом

Разновидности дуговой сварки под флюсом включают мигательную сварку (MIG), инертную газовую сварку (TIG) и подводную дуговую сварку, в которых в качестве флюса используются различные смеси газов или покрытий электродов. Дуговая сварка под флюсом широко применяется в промышленности и является одним из наиболее популярных методов сварки.

Дуговая сварка под флюсом плюсы и минусы

➣ Высокая скорость сварки: дуговая сварка под флюсом позволяет выполнять сварочные работы быстрее, чем другие методы, такие как MIG или TIG сварка.

➣ Доступность и удобство в использовании: сварочные аппараты для дуговой сварки под флюсом часто более доступные и простые в использовании, чем для других методов сварки.

➣ Способность работать на открытом воздухе: флюс в электроде создает защитную атмосферу, что позволяет сварщику работать на открытом воздухе без необходимости дополнительной газовой защиты.

➣ Большое количество брызг: дуговая сварка под флюсом может создавать большое количество брызг, что может затруднять работу и требовать удержания сварочной дуги.

➣ Возможность накопления шлака: при дуговой сварке под флюсом может образовываться шлак, который может потребовать дополнительного удаления и очистки после сварки.

➣ Ограниченная применимость: этот метод сварки может быть не наиболее подходящим для некоторых материалов или толщин металла.

В целом, сварка под флюсом имеет свои преимущества и недостатки, и выбор метода сварки зависит от конкретных требований задачи и условий работы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *